Reaction of *nido***-7,8-C2B9H13 with Dicobalt Octacarbonyl: Crystal Structures of the Complexes** $[Co_2(CO)_2(\eta^5 \text{-} 7,8 \text{-} C_2B_9H_{11})_2]$, $[Co_2(CO)(PMe_2Ph)(\eta^5 \text{-} 7,8 \text{-} C_2B_9H_{11})_2]$, and $[CoCl(PMe₂Ph)₂(\eta⁵-7,8-C₂B₉H₁₁)][†]$

Shelley L. Hendershot,‡ John C. Jeffery,§ Paul A. Jelliss,‡ Donald F. Mullica,‡ Eric L. Sappenfield,‡ and F. Gordon A. Stone*,‡

Department of Chemistry, Baylor University, Waco, Texas 76798-7348, and School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

Received May 16, 1996[®]

The compounds $[Co_2(CO)_8]$ and *nido-7*,8-C₂B₉H₁₃ react in CH₂Cl₂ to give a complex mixture of products consisting primarily of two isomers of the dicobalt species $[Co_2(CO)_2(\eta^5 \text{-} 7,8-C_2B_9H_{11})_2]$ (1), together with small amounts of a mononuclear cobalt compound $[Co(CO)₂(η ⁵-10-CO-7,8-C₂B₉H₁₀)] (5) and a charge-compensated carbonane$ $nido-9-CO-7,8-C₂B₉H₁₁$ (6). In solution, isomers **1a** and **1b** slowly equilibrate. However, column chromatography allows a clean separation of **1a** from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a *nido-C*₂B₉H₁₁ cage framework. The two $Co(CO)(\eta^5 \text{-} 7,8-C_2B_9H_{11})$ units are linked by a Co-Co bond [2.503(2) Å], which is supported by two three-center two-electron $B-H \rightharpoonup$ Co bonds. The latter employ B-H vertices in each cage which lie in α -sites

with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of $PMe₂Ph$ to a CH₂Cl₂ solution of a mixture of the isomers **1**, enriched in **1b**, gave isomers of formulation $[Co_2(CO)(PMe_2Ph)(η ⁵-7,8-C₂B₉H₁₁)₂]$ (**2**). Crystals of one isomer were suitable for X-ray diffraction. The molecule **2a** has a structure similar to that

of **1a** but differs in that whereas one $B-H \rightharpoonup$ Co bridge involves a boron atom in an α -site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the β -site. Reaction between **1b** and an excess of PMe₂Ph in CH₂Cl₂ gave the complex $[CoCl(PMe₂Ph)₂(η ⁵-7,8-C₂B₉H₁₁)] (3), the structure of which was established by$ X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co^{II} species of formulation [Co(PMe2Ph)2(*η*5-7,8-C2B9H11)]. Addition of 2 molar equiv of CNBut to solutions of either **1a** or **1b** gave a mixture of two isomers of the complex $[Co_2(CNBu^t)_2(\eta^5-7,8-C_2B_9H_{11})_2]$ (4). NMR data for the new compounds are reported and discussed.

Introduction

We have recently shown that reactions under mild conditions between $\text{[Ru}_{3}(\text{CO})_{12}\text{]}$ and the carboranes *nido-*7,8-R₂-7,8- $C_2B_9H_{11}$ ($R = H^1$ or Me²) or *nido*-7-NH₂Bu^t-7-CB₁₀H₁₂³ afford mono- or triruthenacarborane carbonyl complexes in good yield. We have extended this methodology for preparing metallacarboranes by investigating the reaction between $[Co₂(CO)₈]$ and $nido-7,8-C₂B₉H₁₃$ with the results described herein. Transition element complexes having metal centers ligated in a pentahapto manner by C_2B_9 or CB_{10} *nido*-icosahedral cage systems and in which the metals are also coordinated exopolyhedrally by carbonyl ligands are important because of their formal relationship with metallacyclopentadienyl carbonyl complexes. Thus the complex $[Ru(CO)_{3}(\eta^{5}$ -7,8-C₂B₉H₁₁)]¹ is isolobal with the very extensively studied species [Mn(CO)3(*η*5-C5H5)]. With

some 80% of all known organometallic complexes of the transition elements containing cyclopentadienyl ligands,⁴ it is not surprising that the chemistry of the metallacyclopentadienyl carbonyls is very extensive. In contrast, relatively little is known about the reactivity patterns of their metallacarborane analogs. This is partly due to a lack of suitable synthetic methods for obtaining this class of compound. Hence the possibility of obtaining metallacarboranes having carbonyl groups attached to the metal vertices directly from reactions between metal carbonyls and *nido-*carboranes is attractive.

Results and Discussion

The compounds $[Co_2(CO)_8]$ and $nido-7,8-C_2B_9H_{13}$ react in $CH₂Cl₂$ at room temperature or below to afford a complicated mixture of products. The major reaction products are two isomers of formulation $[Co_2(CO)_2(\eta^5 \text{-} 7, 8 \text{-} C_2B_9H_{11})_2]$ (1), which equilibrate slowly in solution. These species were characterized by microanalysis and IR and NMR spectroscopies (Tables 1 and 2). One isomer (**1a**) could be separated free of the other by column chromatography, and crystals suitable for X-ray diffraction were obtained. The second isomer **1b** was never isolated entirely free of **1a** (Chart 1).

The molecular structure of **1a** is shown in Figure 1, and selected internuclear separations and angles are listed in Table 3. The molecule consists of two $Co(CO)(\eta^5 \text{-} 7, 8 \text{-} C_2B_9H_{11})$ fragments joined by a Co-Co bond. The latter is supported by two $B-H \rightharpoonup$ Co linkages. The two-electron three-center

[†] In the compounds described in this paper cobalt atoms and $nido$ -C₂B₉ cages form *closo*-1,2-dicarba-3-cobaltadodecaborane structures. Use of this numbering scheme leads to a complicated nomenclature for the metal complexes reported; hence as in earlier papers we treat the cage as a *nido* 11-vertex ligand with numbering as for an icosahedron from which the 12th vertex has been removed. This has the added convenience of relating the metallacarborane complexes to similar species with η^5 -C₅H₅ ligands.

[‡] Baylor University.

[§] University of Bristol.

^X Abstract published in *Ad*V*ance ACS Abstracts,* September 15, 1996.

⁽¹⁾ Anderson, S. A.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *Organometallics* **1995**, *14,* 3516; **1996**, *15*, 1676.

⁽²⁾ Liao, Y.-H.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A.

Organometallics **1996**, in press.

⁽³⁾ Lebedev, V. N.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. $Organometallics$ 1996, 15, 1669.

Organometallics **1996**, *15*, 1669. (4) Janiak, C.; Schumann, H. *Ad*V*. Organomet. Chem.* **1991**, *33*, 291.

Table 1. Analytical and Physical Data

a Measured in CH₂Cl₂ unless otherwise stated, all compounds show broad medium-intensity bands in their infrared spectra at ca. 2550 cm⁻¹ due to B-H absorptions. Peak marked with an asterisk is due to a minor isomer. *^b* Calculated values are given in parentheses. *^c* Approximate values, because these two compounds always occur as a mixture, and because even repeated chromatography cannot remove traces of one from the other. Total yield of two isomers is ca. 30%. *d* v_{max} (NC), measured in petroleum ether. *e* Yield 52% when prepared from **1b**. ^{*f*} N 4.7 (5.1). *g* Microanalysis unavailable. Positive-ion EI mass spectrum: *^m*/*^z* 275.08, [Co(CO)2(*η*5-10-CO-7,8-C2B9H10)]⁺ (calcd 275.08); 247.09 (-CO [×] 1); 219.09 (-CO \times 2); 190.10 ($-CO \times 3$). *h* Solutions may be stained pale brown by trace impurities of 5.

a Chemical shifts in ppm, coupling constants in hertz, measurements in CD_2Cl_2 at room temperature. Peaks marked with an asterisk are due to a minor isomer (see text). *^b* Resonances for terminal BH protons occur as broad unresolved signals in the range *δ* ca. -2 to 3. *^c* Hydrogen-1 decoupled, chemical shifts are positive to high frequency of SiMe4. *^d* Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $BF_3 \cdot Et_2O$ (external). $B-H \rightharpoonup Co$, BCO, and $B-H-B$ assignments are made from fully coupled ¹¹B spectra. Many peaks due to minor isomers may be masked by peaks due to the major counterpart; only distinct peaks due to minor isomers are noted. ^{*e* 31P{1}H} NMR: δ 4.1 (br), with a weak resonance at *δ* 7.4 attributed to an isomer, see text. *^f* 31P{1H} NMR: *δ* 5.2 (br). *^g* Insufficient resolution prevents full analysis of coupling constants; $N = |J_{AX} + J_{AX}|$. *h* A second similar resonance should be observed for the minor isomer, but is presumably hidden by peak due to corresponding nucleus in the major isomer.

bonds involve boron atoms, B(13) and B(23), respectively. These atoms lie in the α -sites with respect to the carbons in the

pentagonal CC*B*BB faces of the *nido*-C2B9 fragments ligating the cobalt atoms. We therefore designate **1a** as the α, α -isomer. Each cobalt atom in **1a** carries a CO group, which is terminally bound (Co-C-O average angle $= 177.8^{\circ}$). Thus the dimetal species is electronically saturated since it has 34 valence electrons with each $C_2B_9H_{11}$ cage formally contributing six electrons to the system and the carbonyl ligands four electrons.

The Co–Co separation $[2.503(2)$ Å] is similar to those found in many polynuclear cobalt complexes⁵ and may be compared with the Co-Co bond distances in the two isomers of $[Co₂(\mu CO$ { μ -B₁₀H₈(SEt₂)₂}(CO)₄} [average 2.489(2) Å^{[6} and in [WCo₂(μ₃-CPh)(CO)₈(η⁵-7,8-Me₂-7,8-C₂B₉H₉)] [2.502(3) Å].⁷

The agostic $B-H \rightharpoonup$ Co linkages in **1a** are very common structural features for dimetal complexes in which a metal atom M in an icosahedral *closo*-3,1,2-MC₂B₉ framework forms an exopolyhedral bond to another metal center.8 Clear evidence for the presence of the hydrogen atoms H(13) and H(23) in **1a** came from the NMR spectra, discussed later, but these atoms were located and refined in the analysis of the diffraction data.

⁽⁵⁾ Raithby, P. R. In *Transition Metal Clusters*; Johnson, B. F. G., Ed.; Wiley: Chichester, 1980; Chapter 2.

⁽⁶⁾ Schubert, D. M.; Knobler, C. B.; Wegner P. A.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1988**, *110*, 5219.

⁽⁷⁾ Baumann, F.-E.; Howard, J. A. K.; Musgrove, R. J.; Sherwood, P.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1988**, 1891.

^{(8) (}a) Stone, F. G. A. *Ad*V*. Organomet. Chem.* **1990**, *31*, 53. (b) Brew, S. A.; Stone, F. G. A. *Ad*V*. Organomet. Chem.* **1993**, *35,* 135. (c) Jelliss, P. A.; Stone, F. G. A. *J. Organomet. Chem.* **1995**, *500*, 307.

Figure 1. Molecular structure of the α , α -isomer $[Co_2(CO)_2(\eta^5-7, 8-7)]$ $C_2B_9H_{11}$ ₂] (**1a**) showing the crystallographic atom-labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Only the agostic hydrogen atoms are shown for clarity.

Chart 1

As expected, the atoms $B(13)$ and $B(23)$ unsymmetrically bridge the Co–Co bond $[Co(1)–B(13) = 2.049(7)$ Å and Co(1)–B(23) $= 2.138(8)$ Å; Co(2)-B(13) $= 2.134(8)$ Å and Co(2)-B(23) $= 2.056(7)$ Å]. The cobalt atoms, the midpoints of the cage C-C connectivities, and CO ligands do not all lie in a plane, but adopt a more twisted configuration, as revealed by the $C(1)$ - $Co(1)-Co(2)-C(2)$ dihedral angle of 56.1°. This is reminiscent of the crystal structure of the complex $[Ni_2(CO)_2(\eta^5-2,7-Me_2 2,7-C_2B_9H_9$ ₂],⁹ which contains two Ni(CO)(η^5 -2,7-Me₂-2,7- $C_2B_9H_9$) units linked by a long Ni \cdots Ni connectivity and two agostic $B-H \rightharpoonup Ni$ groups in a very similar manner to that

observed in **1a**. The disposition of the carbon atoms in both the cages of **1a** is *anti* to the carbonyl groups. While it is ostensibly possible to generate isomers by disposing these carbon atoms *syn* to the carbonyl ligands in one or both cages, there is no structural precedent for this in our work or in similar dimeric metallacarborane structures where B_{α} -H \rightarrow M contacts are formed.10

Successive chromatographic procedures yielded solutions of sufficiently pure **1a** and **1b** to be able to record accurate IR and NMR measurements for both complexes, and the data are listed in Tables 1 and 2, respectively. The IR spectrum of **1a** shows two strong $v_{\text{max}}(\text{CO})$ peaks at 2086 and 2066 cm⁻¹. The $^{11}B\{^1H\}$ NMR spectrum revealed a pattern of nine singlet signals (each integrating to two boron nuclei) consistent with two identical cages in a molecule with axial *C*² molecular symmetry, as found in the X-ray structure, with the C_2 axis lying perpendicular to the Co-Co bond. One of the signals (*δ* 15.4) becomes a doublet in the fully coupled spectrum, with a diminished $J_{\rm HB}$ coupling of 92 Hz, indicative of an agostic B-H \sim Co system. Though this coupling lies at the high end of the range expected for $B-H \rightharpoonup M$ groups,^{8b} the presence of the equivalent $B-H \rightharpoonup$ Co hydrogen atoms was confirmed by the above-discussed X-ray results and also by the 1H NMR spectrum, with the appearance of a broad quartet at δ -11.45 $(J_{BH} = 92 \text{ Hz})$. The latter spectrum also showed two cage CH resonances at δ 3.38 and 3.65, in accordance with the structure and symmetry of the molecule. The 13C{1H} NMR spectrum revealed, as expected, one resonance due to the CO nuclei at *δ* 196.0, but only one broad peak due to the CH carbon nuclei (*δ* 43.1), which must be due to partial overlap of two signals.

The IR spectrum of complex **1b** was almost identical with that of **1a**, with strong *ν*max(CO) absorptions at 2088 and 2070 cm-1. The complete lack of molecular symmetry manifests itself in the $^{11}B\{^1H\}$ NMR spectrum as a collection of 17 distinguishable signals (one peak being due to fortuitous overlap of two resonances). Two of these signals (*δ* 24.7 and 16.6) were, as determined by deduction from the fully coupled spectrum, due to inequivalent $B-H \rightharpoonup$ Co boron nuclei, with *J*HB coupling constants of 79 and 91 Hz, respectively. Correspondingly, in the ¹H NMR spectrum, two broad quartets were observed at δ -12.98 (J_{BH} = 79 Hz) and -11.39 (J_{BH} = 91 Hz). As expected, all four CH nuclei gave rise to separate resonances (*δ* 3.55, 3.62, 3.75, and 3.96) and this was also the case in the ¹³C{¹H} NMR spectrum (δ 58.3, 55.3, 43.8, and 37.5). In this latter spectrum, two resonances are seen for the inequivalent CO ligands at *δ* 195.8 and 193.5. There is little doubt from these spectroscopic data that **1b** is the α , β -isomer, where one of the cages involves a B_β -H \rightarrow Co linkage and where the cage carbon atoms in the α -system almost certainly lie *anti* to the carbonyl groups.

It should be noted that, even allowing for some flexibility of the molecules in solution in the form of a partial rotation or "wiggling" about the Co-Co bond, the overall molecular symmetry and, therefore, the number of signals expected in the NMR spectra of **1a** and **1b** remains the same. Complete rotation about the Co-Co bond could only be facilitated by breaking the $B-H \rightharpoonup$ Co contacts, and this was indeed observed to be happening, but at a very slow rate. If a solution of pure **1a** was left to stir in CH_2Cl_2 at room temperature, then the formation of **1b** was monitored over a period of 24-48 h, until an equilibrium ratio of 5:2 (**1a**:**1b**) was achieved. Solutions

⁽⁹⁾ Carr, C.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *Inorg. Chem*. **1994**, *33*, 1666.

^{(10) (}a) Baker, R. T.; King, R. E.; Knobler, C. B.; O'Con, C. A.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1978**, *100*, 8266. (b) Behnken, P. E.; Marder, T. B.; Baker, R. T.; Knobler, C. B.; Thomson, M. R.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1985**, *107*, 932.

Table 3. Selected Internuclear Distances (Å) and Angles (deg) for $[Co_2(CO)_2(\eta^5 \text{-} 7, 8 \text{-} C_2B_9H_{11})_2]$ α , α -Isomer (1a) with Estimated Standard Deviations in Parentheses

$Co(1)-C(1)$	1.784(7)	$Co(1)-C(12)$	2.031(6)	$Co(1)-B(13)$	2.049(7)	Co(1) – C(11)	2.090(6)
$Co(1)-B(14)$	2.109(7)	$Co(1)-B(15)$	2.112(7)	$Co(1)-B(23)$	2.138(8)	Co(1) – Co(2)	2.503(2)
$Co(2)-C(2)$	1.779(7)	Co(2) – C(22)	2.053(6)	$Co(2)-B(23)$	2.056(7)	$Co(2)-C(21)$	2.082(7)
$Co(2)-B(25)$	2.097(7)	$Co(2)-B(24)$	2.101(7)	$Co(2) - B(13)$	2.134(8)	$C(1)-O(1)$	1.137(8)
$C(2)-O(2)$	1.124(9)	$Co(1)-H(23)$	1.66(6)	$Co(2) - H(13)$	1.58(8)	$B(13) - H(13)$	0.88(8)
$B(23) - H(23)$	1.04(6)						
$C(1) - C0(1) - C(12)$		163.5(3)	$C(1) - C0(1) - B(13)$	138.5(3)		$C(12) - C0(1) - B(13)$	49.4(3)
$C(1) - C0(1) - C(11)$		117.4(3)	$C(12) - C0(1) - C(11)$	46.1(3)		$B(13) - C0(1) - C(11)$	83.8(3)
$C(1) - C0(1) - B(14)$		93.4(3)	$C(12) - C0(1) - B(14)$	84.4(3)		$B(13) - Co(1) - B(14)$	51.6(3)
$C(11) - C0(1) - B(14)$		83.3(3)	$C(1) - C0(1) - B(15)$	84.0(3)		$C(12) - C0(1) - B(15)$	82.0(3)
$B(13) - C0(1) - B(15)$		87.4(3)	$C(11) - C0(1) - B(15)$	47.2(3)		$B(14) - C0(1) - B(15)$	50.6(3)
$C(1) - C0(1) - B(23)$		93.6(3)	$C(12) - C0(1) - B(23)$	99.4(3)		$B(13) - C0(1) - B(23)$	98.1(3)
$C(11) - C0(1) - B(23)$		130.4(3)	$B(14) - C0(1) - B(23)$	135.4(3)		$B(15) - C0(1) - B(23)$	173.9(3)
$C(1) - C0(1) - C0(2)$		106.7(2)	$C(12) - C0(1) - C0(2)$	89.3(2)		$B(13) - C0(1) - C0(2)$	54.8(2)
$C(11) - C0(1) - C0(2)$		134.6(2)	$B(14) - C0(1) - C0(2)$	84.0(2)		$B(15) - C0(1) - C0(2)$	134.2(2)
$B(23) - C0(1) - C0(2)$		51.9(2)	$C(2)-C0(2)-C(22)$	163.4(3)		$C(2)-C0(2)-B(23)$	139.5(4)
$C(22) - C0(2) - B(23)$		49.9(3)	$C(2)-C0(2)-C(21)$	117.8(3)		$C(22) - C0(2) - C(21)$	45.7(3)
$B(23) - C0(2) - C(21)$		83.4(3)	$C(2)-C0(2)-B(25)$	84.4(3)		$C(22) - C0(2) - B(25)$	82.5(3)
$B(23)$ - Co(2) - B(25)		87.6(3)	$C(21) - C0(2) - B(25)$	47.5(3)		$C(2) - C0(2) - B(24)$	94.4(3)
$C(22) - C0(2) - B(24)$		85.3(3)	$B(23) - C0(2) - B(24)$	51.5(3)		$C(21) - C0(2) - B(24)$	83.8(3)
$B(25)$ - Co(2) - B(24)		51.1(3)	$C(2) - C0(2) - B(13)$	93.1(3)		$C(22) - C0(2) - B(13)$	98.8(3)
$B(23) - C0(2) - B(13)$		98.1(3)	$C(21) - C0(2) - B(13)$	130.0(3)		$B(25) - C0(2) - B(13)$	173.7(3)
$B(24)-C0(2)-B(13)$		135.0(3)	$C(2)-C0(2)-C0(1)$	107.1(3)		$C(22) - C0(2) - C0(1)$	89.4(2)
$B(23) - C0(2) - C0(1)$		54.9(2)	$C(21) - C0(2) - C0(1)$	134.1(2)		$B(25)-C0(2)-C0(1)$	134.6(2)
$B(24)-C0(2)-C0(1)$		83.8(2)	$B(13) - C0(2) - C0(1)$	51.7(2)		$O(1) - C(1) - Co(1)$	177.2(7)
$O(2) - C(2) - Co(2)$		178.4(8)					

containing an initially high proportion of **1b** took slightly less time to equilibrate $($ < 12 h). There are in theory a maximum of six isomers of **1** which could form,10b but no others, in particular a β , β -isomer, were observed, either after the workup of the original preparation or after the solutions were stirred at room temperature and above.

Such interconversion between $B_\alpha-H \rightarrow M$ and $B_\beta-H \rightarrow M$ systems has been observed in spectroscopic studies on solutions of the complex [WIr(*μ*-CC₆H₄Me-4)(CO)₂(PPh₃)₂(*η*⁵-7,8-Me₂-7,8-C₂B₉H₉)].¹¹ In this case an equilibrium exists between three isomers, one where the *closo*-3,1,2-WC2B9 core utilizes a boron

atom in the α -site in the CCBBB coordinating face of the cage to form a $B-H \rightharpoonup Ir$ bond, a second isomer using a boron in the β -position, and a third isomer where no B-H \rightarrow Ir group is present. The intermediacy of the latter is believed to provide the route between the other two, since in this isomer the η^5 -7,8-Me₂-7,8-C₂B₉H₉ cage can rotate to allow either B_α -H or B_{β} –H bonds to come into position for bonding to iridium. It is this kind of interconversion that, as will be discussed later, can have a significant influence on the reactivity pattern of the compounds **1**.

As mentioned above, **1b** was not obtained entirely free of **1a**, and thus crystals for an X-ray diffraction study were not obtained. However, treatment of mixtures enriched in **1b** with 1 equiv of PMe₂Ph gave isomers of formulation $[Co₂(CO)(PMe₂-$ Ph) $(\eta^5$ -7,8-C₂B₉H₁₁)₂] (2). Crystals of the major isomer (2a) suitable for X-ray analysis were obtained after careful chromatography and recrystallization, thus allowing establishment of its molecular structure.

The molecular structure is shown in Figure 2, and selected bond distances and angles are listed in Table 4. Apart from the replacement of a CO ligand by a $PMe₂Ph$ molecule, the structure of **2a** is similar to that of **1a**. It differs, however, in the disposition of the two $B-H \rightharpoonup$ Co groups. Whereas in **1a** both groups involve boron atoms in the α -sites in the two

CC*B*BB rings, in **2a** one linkage involves the boron atom B(13),

Figure 2. Molecular structure of the α , β -isomer [Co₂(CO)(PMe₂Ph)- $(\eta^5$ -7,8-C₂B₉H₁₁)₂] (2a) showing the crystallographic atom-labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Only the agostic hydrogen atoms are shown for clarity.

thus forming a $B_\alpha - H$ \rightarrow Co bond, while the other bridge employs the boron atom B(24), hence forming a B_6 -H \rightarrow Co bond. This mode of unsymmetrical exopolyhedral B-H vertex bridge-bonding by two η^5 -7,8-C₂B₉H₁₁ groups across a metalmetal bond has been previously seen in the dirhodium complex $[Rh_2(PPh_3)_{2}(\eta^5-7,8-C_2B_9H_{11})_{2}].$ ¹⁰ In both the latter rhodium complex and in $2a$ the carbon atoms in the α -cage systems occupy the usual positions *anti* to the carbonyl and phosphine groups, respectively. The Co \sim Co bond in **2a** [2.5480(9) \AA] is slightly longer than that in **1a** but within the customary range of such distances.⁵ Several complexes with $Co-PMe₂Ph$ groups have been studied by X-ray crystallography, and the Co-P bond distances are in the range $2.174 - 2.242$ Å.¹² The Co-P bond of 2.269(1) Å in **2a** is somewhat longer.

⁽¹¹⁾ Jeffery, J. C.; Ruiz, M. A.; Sherwood, P.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans*. **1989**, 1845.

^{(12) (}a) Werner, H.; Xiaolan, L.; Nu¨rnberg, O. *Organometallics* **1992**, *11*, 432. (b) Moldes, I.; Ros, J. R.; Mathieu, R.; Solans, X.; Font-Bardía, M. *J. Organomet. Chem*. **1992**, *423*, 65. (c) Zhou, Z.; Jablonski, C.; Brisdon, J. Organometallics 1994, 13, 781. (d) Braunstein, P.; Rosé, J.; Toussaint, D.; Jääskeläinen, S; Ahlgren, M.; Pakkanen, T. A.; Pursiainen, J.; Toupet, L.; Grandjean, D. *Organometallics* **1994**, *13*, 2472. (e) Caffyn, A. J. M.; Martin, A.; Mays, M. J.; Raithby, P. R.; Solan, G. A. *J. Chem. Soc., Dalton Trans.* **1994**, 609.

Table 4. Selected Internuclear Distances (Å) and Angles (deg) for $[Co_2(CO)(PMe_2Ph)(*η*5-7,8-C_2B₉H₁₁)₂]$ α,β -Isomer (2a) with Estimated Standard Deviations in Parentheses

1.783(5) $Co(1)-C(1)$	Co(1) – C(12)	2.020(4)	$Co(1)-B(13)$	2.046(5)	Co(1) – C(11)	2.102(4)
$Co(1)-B(15)$ 2.121(5)	$Co(1)-B(14)$	2.126(5)	$Co(1)-B(24)$	2.161(5)	Co(1) – Co(2)	2.5480(9)
$Co(2)-B(24)$ 2.075(5)	Co(2) – C(21)	2.075(4)	$Co(2)-B(23)$	2.101(5)	$Co(2)-B(25)$	2.102(5)
Co(2) – C(22) 2.105(4)	$Co(2) - B(13)$	2.159(5)	$Co(2)-P(1)$	2.2691(14)	$C(1)-O(1)$	1.132(5)
$P(1) - C(31)$ 1.809(5)	$P(1) - C(41)$	1.821(5)	$P(1) - C(51)$	1.826(4)	$C(51) - C(56)$	1.380(6)
$C(51) - C(52)$ 1.407(6)	$C(52) - C(53)$	1.383(7)	$C(53)-C(54)$	1.387(8)	$C(54) - C(55)$	1.375(8)
1.378(7) $C(55)-C(56)$	$Co(1)-H(2)$	1.59(4)	$Co(2) - H(1)$	1.58(4)	$B(13) - H(1)$	1.23(4)
1.24(4) $B(24) - H(2)$						
$C(1) - C0(1) - C(12)$	164.4(2)	$C(1) - C0(1) - B(13)$	139.4(2)		$C(1) - C0(1) - C(11)$	118.7(2)
$C(1) - C0(1) - B(15)$	86.7(2)	$C(1) - C0(1) - B(14)$	96.0(2)		$C(1) - C0(1) - B(24)$	97.1(2)
$C(1) - C0(1) - C0(2)$	106.3(2)	$C(12) - C0(1) - C0(2)$	89.26(12)		$B(13) - C0(1) - C0(2)$	54.75(14)
$C(11) - C0(1) - C0(2)$	134.43(13)	$B(15)-C0(1)-C0(2)$	135.52(14)		$B(14)-C0(1)-C0(2)$	84.58(14)
$B(24)-C0(1)-C0(2)$	51.48(13)	$B(24)-C0(2)-C(21)$	82.9(2)		$B(24)-C0(2)-P(1)$	148.24(14)
$C(21) - C0(2) - P(1)$	89.10(13)	$B(23) - C0(2) - P(1)$	156.79(14)		$B(25)-C0(2)-P(1)$	101.45(14)
$C(22) - C0(2) - P(1)$	112.38(12)	$B(13) - C0(2) - P(1)$	96.33(14)		$B(24)-C0(2)-C0(1)$	54.59(13)
$C(21) - C0(2) - C0(1)$	130.00(12)	$B(23) - C0(2) - C0(1)$	89.51(14)		$B(25) - C0(2) - C0(1)$	82.75(13)
$C(22) - C0(2) - C0(1)$	134.51(12)	$B(13) - C0(2) - C0(1)$	50.70(13)		$P(1) - C0(2) - C0(1)$	112.62(4)
$C(12) - B(13) - C0(1)$	63.8(2)	$B(18) - B(13) - C0(1)$	120.0(3)		$B(17) - B(13) - C0(1)$	117.1(3)
$B(14) - B(13) - C0(1)$	66.8(2)	$C(12)-B(13)-C0(2)$	111.2(3)		$B(18)-B(13)-C0(2)$	145.6(3)
$B(17) - B(13) - C0(2)$	145.1(3)	$B(14) - B(13) - C0(2)$	105.8(3)		$Co(1)-B(13)-Co(2)$	74.5(2)
$B(29) - B(24) - C0(2)$	118.7(3)	$B(28) - B(24) - C0(2)$	118.3(3)		$B(25) - B(24) - C0(2)$	65.1(2)
$B(23) - B(24) - C0(2)$	65.0(2)	$B(29) - B(24) - C0(1)$	140.9(3)		$B(28) - B(24) - C0(1)$	150.1(3)
$B(25) - B(24) - C0(1)$	101.8(3)	$B(23) - B(24) - C0(1)$	111.4(3)		$Co(2)-B(24)-Co(1)$	73.9(2)
$O(1) - C(1) - Co(1)$	177.9(4)	$C(31) - P(1) - C0(2)$	114.8(2)		$C(41) - P(1) - C0(2)$	120.0(2)
$C(51)-P(1)-C0(2)$	111.90(14)					

The IR and NMR spectroscopic data for **2** may now be addressed. The IR spectrum revealed, as expected, one CO absorption at 2056 cm^{-1} for $2a$, with a small but discernible peak at 2028 cm⁻¹ arising from a minor isomer. The $^{11}B\{^1H\}$ NMR spectrum (Table 2) showed the expected number of peaks for the major product **2a**, with resonances of note in the fully coupled spectrum at δ 18.1 and 14.9 ($J_{HB} = 79$ and 85 Hz, respectively), due to the inequivalent $B-H \rightarrow C_0$ boron nuclei. In addition, two weak signals arising from the minor isomer were seen at *δ* 14.3 and 10.6 with only the higher field resonance showing a discernible J_{HB} coupling (82 Hz). Peaks due to the minor isomer, apart from in the ${}^{31}P{^1H}$ NMR spectrum, were not observed elsewhere because of its low concentration. This latter spectrum was simple, displaying one large singlet for **2a** at δ 4.1, with a much weaker resonance at δ 7.4 for the minor isomer. The 1H NMR spectrum shows two resonances due to the B-H \rightarrow Co protons at δ -15.01 and -10.47 with J_{BH} = 79 and 85 Hz, respectively. There were two doublet resonances for the diastereotopic PMe groups (*δ* 1.62 and 1.76, both with J_{PH} = 10 Hz) and four peaks for the CH protons (δ 2.25, 2.33, 3.57, and 3.88), in accordance with the lack of molecular symmetry. The ${}^{13}C{^1H}$ NMR spectrum revealed a single resonance due to the CO group (δ 198.0), and the remaining signals are in agreement with the established structure.

Although the experimental procedure for the synthesis of **2a** from **1b** produced small amounts $($ < 10%) of a minor isomer, **2a** was clearly the major product. The proportion of the minor isomer was somewhat variable and depended on the chromatographic procedure. Curiously, if the synthesis was attempted using pure **1a**, an intractable mixture of **2a**, the minor isomer, and other compounds was produced. The nature of this minor isomer is uncertain, and we rule out multiple substitution by PMe₂Ph to give a complex with no CO ligands, as will be discussed momentarily, particularly as this species appears to display a CO band (2028 cm^{-1}) in the IR spectrum. Two possibilities present themselves, which are plausible on the basis of the work discussed so far. The first is an α , β -isomer (2b) with the same cage $B-H \rightarrow$ Co configuration as in 2a, but with the PMe2Ph carried by the other Co atom. The second is an α , α -isomer (2c), similar to **1a** in its cage arrangements, where it would make no difference to which Co atom the $PMe₂Ph$ ligand is attached. In both of these we suggest that the carbon atoms in the α -cage ligands lie *anti* to the carbonyl and phosphine ligands, as has been consistently observed in **1a**, **2a**, and previous structural studies.^{10b} Unfortunately we can only speculate, as the NMR spectra for **2b** and **2c** would likely be very similar due to both complexes lacking in any kind of symmetry, and our studies have not allowed us to discriminate between the two. Of course, in the reaction of PMe₂Ph with **1a**, where numerous products are formed, both **2b** and **2c** could be present, and we cannot rule out the formation of species where the α -system cage carbon atoms are *syn* to the carbonyl and phosphine ligands.

Unlike the compounds **1** NMR spectroscopic studies of **2a** showed no tendency for it to equilibrate with its minor isomer(s) in solution, and indeed, traces of the minor isomer detected in the original preparation could be completely removed. Therefore $B_{\alpha/\beta}$ -H \rightarrow Co interconversion does not appear to be a significant process with the monosubstituted phosphine complexes **2**.

In an attempt to substitute the remaining CO ligand in **2a**, reaction of **1b** with $PMe₂Ph$ was repeated employing 2 equiv of the phosphine in CH2Cl2. However, only **2a** was recovered from this reaction in any quantity, and no disubstituted product could be isolated. When the reaction was repeated in $CH₂Cl₂$ with a 5-fold excess of $PMe₂Ph$, then the complex $[CoCl(PMe₂-$ Ph)₂(η ⁵-7,8-C₂B₉H₁₁)] (**3**) was formed. While there is a fairly extensive family of compounds known of the type $[Co(\eta^5-C_5R_5)-]$ $(\eta^5$ -7,8-C₂B₉H₉R'₂)] and [Co(η^5 -C₂B₉H₉R'R'')₂]^{*n*-} (R = H, Me; R', R" = H, alkyl, aryl, halide, $2e^-$ donor ligands; $n = 0, 1$, 13 very few mononuclear cobaltacarborane species containing other inorganic ligands coordinated to the cobalt have been reported. For this reason and because the presence of the chloride ligand was not ascertained from the original NMR measurements, single crystals of compound **3** were obtained and subjected to X-ray analysis. The molecular structure is shown in Figure 3, and selected bond distances and angles are listed in Table 5.

⁽¹³⁾ Grimes, R. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, U.K., 1995; Vol. 1 (Housecroft, C. E., Ed.), Chapter 9.

Table 5. Selected Internuclear Distances (Å) and Angles (deg) for [CoCl(PMe₂Ph₎₂(*η*⁵-7,8-C₂B₉H₁₁)] (**3**) with Estimated Standard Deviations in Parentheses

$Co-C(1)$	2.077(5)	$Co-C(2)$	2.092(5)	$Co-B(3)$	2.157(6)	$Co-B(4)$	2.192(5)
$Co-B(5)$	2.136(6)	$Co-Cl(1)$	2.292(1)	$Co-P(1)$	2.271(2)	$Co-P(2)$	2.262(2)
$P(1)-C(11)$	1.820(5)	$P(1)-C(12)$	1.817(5)	$P(1)-C(13)$	1.821(5)	$P(2)-C(21)$	1.818(5)
$P(2)-C(22)$	1.820(5)	$P(2)-C(23)$	1.824(5)				
$C(1)-Co-C(2)$		45.5(2)	$C(1)-Co-B(3)$	80.4(2)	$C(2)$ -Co-B(3)		46.2(2)
$C(1)$ -Co-B(4)		81.9(2)	$C(2)$ -Co-B(4)	81.2(2)	$B(3)-Co-B(4)$		49.9(2)
$C(1)$ -Co-B(5)		47.7(2)	$C(2)$ -Co-B (5)	80.5(2)	$B(3)-Co-B(5)$		83.8(2)
$B(4)-Co-B(5)$		49.0(2)	$C(1)-Co-Cl(1)$	95.4(1)		$C(2)-Co-Cl(1)$	86.9(1)
$B(3)-Co-Cl(1)$		115.9(2)	$B(4)-Co-Cl(1)$	165.7(2)		$B(5)-Co-Cl(1)$	136.7(2)
$C(1)-Co-P(1)$		99.7(1)	$C(2)-Co-P(1)$	143.6(1)	$B(3)-Co-P(1)$		157.9(2)
$B(4)-Co-P(1)$		108.1(2)	$B(5)-Co-P(1)$	80.3(2)	$Cl(1)-Co-P(1)$		86.2(1)
$C(1)-Co-P(2)$		160.7(1)	$C(2)-Co-P(2)$	115.7(1)	$B(3)-Co-P(2)$		81.5(2)
$B(4)-Co-P(2)$		91.3(2)	$B(5)-Co-P(2)$	136.1(2)	$Cl(1)-Co-P(2)$		86.6(1)
$P(1)-Co-P(2)$		99.5(1)	$Co-P(1)-C(11)$	120.3(2)		$Co-P(1)-C(12)$	116.0(2)
$C(11) - P(1) - C(12)$		101.0(2)	$Co-P(1)-C(13)$	111.5(2)		$C(11) - P(1) - C(13)$	99.8(2)
$C(12) - P(1) - C(13)$		106.2(2)	$Co-P(2)-C(21)$	112.9(2)		$Co-P(2)-C(22)$	119.1(2)
$C(21)$ -P(2)-C(22)		101.7(3)	$Co-P(2)-C(23)$	117.5(2)		$C(21) - P(2) - C(23)$	101.8(2)
$C(22) - P(2) - C(23)$		101.2(2)					

Figure 3. Molecular structure of $[CoCl(PMe₂Ph)₂(η ⁵-7,8-C₂B₉H₁₁)]$ (**3**) showing the crystallographic atom-labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Hydrogen atoms are omitted for clarity.

The cobalt is ligated in an η^5 fashion by the CCBBB face of the cage $[Co-C(1) = 2.077(5)$ Å, $Co-C(2) = 2.092(5)$ Å, $Co B(3) = 2.157(6)$ Å, Co-B(4) = 2.192(5) Å, Co-B(5) = 2.136-(6) Å]. The Co-P bond lengths in **3** (average 2.267 Å) are similar to the Co-P distance observed in complex **2a** [2.269- (1) Å] and are again perceptibly longer than those in the other cobalt complexes containing $PMe₂Ph$ ligands.¹² The Co-Cl bond [2.292(1) Å] is only slightly longer than the mean $Co-$ Cl distance of 2.260 Å quoted for a range of six-coordinate Co^{III} complexes.¹⁴

The NMR spectroscopic data for **3** are as expected and reflect the presence in the molecule of a mirror plane that includes the cobalt and chlorine atoms and the midpoint of the C-C connectivity in the cage, with the PMe2Ph ligands sitting symmetrically on either side of this plane. Thus the $^{31}P\{^1H\}$ NMR spectrum shows just one signal at *δ* 5.2 for the equivalent phosphorus nuclei, and the 1H NMR spectrum reveals one resonance for the cage CH protons at *δ* 3.49. The latter spectrum shows two virtual triplet signals for the PMe groups (*δ* 1.52 and 1.91), as expected for *Cs* molecular symmetry in solution.

Of interest in the formation of **3** is the origin of the chloride ligand. It is almost certainly derived from the CH_2Cl_2 solvent used, and examples where metallacarborane complexes have abstracted chlorine atoms from CH_2Cl_2 are documented.^{15,16} We believe that compound 1b and an excess of PMe₂Ph in solution

produces an equilibrium mixture (Scheme 1) of a $34e^$ diamagnetic Co₂ species **A** and a mononuclear $17e^-$ Co^{II} moiety **B**. The latter then readily abstracts a chlorine atom from the solvent to give the product 3 . If the reaction of PMe₂Ph with **1b** is repeated in THF, an extremely air-sensitive yellow-brown solution is produced. A $^{31}P{^1H}$ NMR spectrum in THF- d_8 of the oily product from this reaction shows a very broad resonance at δ ca. -37 ($v_{1/2}$ = 1953 Hz) with a weaker less broad peak at δ ca. 35 ($v_{1/2} = 641$ Hz) in 4:1 ratio, respectively. We tentatively attribute the smaller signal to diamagnetic complex **A** and the larger to paramagnetic species **B**. Furthermore, the $^{11}B\{^1H\}$ NMR spectrum is dominated by very broad peaks due to complex **B** over a wide chemical shift range $(\delta -1.2, -82.9,$ -86.1 , and -134.5), consistent with previously reported ¹¹B NMR spectra of paramagnetic cobaltacarborane complexes.¹⁷ Smaller, sharper peaks also appear in the $^{11}B{^1H}$ NMR spectrum of the mixture at δ -7.8, -11.9, -12.9, and -20.1, which would be due to complex **A**. Because of the prevalence in the NMR spectra of peaks due to species **B**, the room temperature equilibrium in THF (Scheme 1) clearly lies well to the right. Variable temperature ${}^{31}P{^1H}$ NMR spectra of the $A - B$ mixture in THF- d_8 were therefore measured down to -90 °C. The spectrum at this temperature showed no resonance due to species **B**, but a much stronger sharper peak was observed at δ 35.3 ($v_{1/2}$ = 147 Hz) attributable to complex **A**. This result implies a reversal in the equilibrium position shown in Scheme

(17) Wiersema, R. J.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1974**, *96*, 761.

⁽¹⁴⁾ Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. *J. Chem. Soc., Dalton Trans.* **1989**, S1.

⁽¹⁵⁾ Baker, R. T.; Delaney, M. S.; King, R. E.; Knobler, C. B.; Long, J. A.; Marder, T. B.; Paxson, T. E.; Teller, R. G.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1984**, *106*, 2965.

⁽¹⁶⁾ Jeffery, J. C.; Stone, F. G. A.; Topaloğlu, I. *Polyhedron* 1993, 12, 319.

Table 6. Crystallographic Data

a 1948 observed reflections used in refinement with $F_0 > 4\sigma(F_0)$. *b* Structure was refined on F_0^2 using all data: $wR_2 = \left[\sum [w(F_0^2 - F_0^2)^2] \right]$ $\sum w(F_0^2)^2$ ^{1/2} where $w^{-1} = [\sigma^2(F_0^2) + a(P)^2 + bP]$ and $P = [\max(F_0^2, 0) + 2F_0^2]/3$. σ The value in parentheses is given for comparison with refinements based on F_0 with a typical threshold of $F_0 > 4\sigma(F_0)$ and $R_1 = \$ $\sum w^{1/2} |F_0| - |F_c| / |\sum w^{1/2}| F_0|$. Weighting scheme of the form where $w^{-1} = [\sigma^2(F_0) + gF_0^2]$, where $\sigma^2(F_0)$ is the variance in F_0 due to counting statistics; *g* was chosen so as to minimize variation in $\sum w(|F_0| - |F_c|)^2$ with $|F_0|$.

1, as one would expect since the process is a simple homolytic bond fission/formation reaction. If a few drops of $CCl₄$ are added to the THF solution of **A** and **B**, the color turns immediately purple and compound **3** is formed, identified by its NMR spectra.

Reaction of either **1a** or **1b** in CH_2Cl_2 with 2 equiv of $CNBu^t$ at room temperature, followed by column chromatography, produced the complex $[Co_2(CNBu^t)_2(\eta^{5-7}, 8-C_2B_9H_{11})_2]$ (4) in reasonable yield. While the IR spectrum of a petroleum ether solution of 4 showed only two strong, broad $\nu_{\text{max}}(NC)$ bands at 2190 and 2180 cm⁻¹, it was evident from NMR spectroscopy that the compound existed as an inseparable mixture of two isomers, **4a** and **4b**. On the basis of NMR measurements of this and other complexes discussed herein, we can confidently assign the major component **4a** as the α, α -isomer, akin to **1a**, and **4b** as the α , β -complex, analogous to **1b**. Furthermore, **4a** and $4b$ exist in CH_2Cl_2 solution in equilibrium in a 3:1 ratio, respectively.

In a fully coupled 11B NMR spectrum, a doublet peak at *δ* 12.3 (J_{HB} = 89 Hz) corresponds to the equivalent B-H \rightarrow Co boron nuclei in **4a**, with two smaller peaks at *δ* 19.0 and 13.0 $(J_{HB} = 79$ and 89 Hz, respectively) due to inequivalent B-H \rightarrow Co borons in **4b**. All of the peaks expected for **4a** were accounted for in this spectrum, the remaining signals being attributable to isomer **4b**. Two of the three quartet resonances expected for the $B-H \rightarrow$ Co protons in the isomer mixture were observed in the ¹H NMR spectrum. These occur at δ -11.54 $(J_{BH} = 89 \text{ Hz})$ for **4a** and at $\delta -13.72$ ($J_{BH} = 79 \text{ Hz}$) for **4b**, the other resonance for **4b** probably being masked by the strong signal due to **4a**. The remaining signals in the 1H NMR

spectrum were as expected based on a *C*² molecular symmetry for **4a** and no symmetry for **4b**. The ${}^{13}C_1{}^{1}H_1{}$ NMR spectrum clearly revealed a broad resonance due to the *C*NBut nuclei in **4a** at *δ* 142.9. This chemical shift is somewhat lower than that observed for the ligating isocyanide carbon atoms of the complex $[Co_2(CNBu^t)_8]$,¹⁸ which displays three signals (δ 229.0, 182.0, and 177.7) in a toluene- d_8 solution at -90 °C. However, the chemical shift observed for **4a** is fairly similar in magnitude to the analogous peaks in the ${}^{13}C{^1H}$ NMR spectra of the complexes $[M(CNBu^t)_2(\eta^5-7, 8-Me_2-7, 8-C_2B_9H_9)] (M = Ni, \delta)$ $= 137.1$; $M = Pt$, $\delta = 127.7$.⁹ The minor isomer **4b** shows one peak due to a $CNBu^t$ nucleus at δ 144.1; again it is believed that a second peak may be hidden by the stronger signal due to **4a**. All the remaining signals observed are in agreement with the proposed structures for **4a** and **4b**. It is assumed that the carbon atoms in the α -cage systems in **4a** and **4b** lie *anti* to the CNBut ligands, similar to that found for **1a** and **2a**. Of course, only structural analysis by X-ray diffraction could prove this beyond doubt, but it was not possible to obtain X-ray quality crystals of either isomer of **4**.

That the reaction between either **1a** or **1b** and CNBut produces a mixture of the isomers **4** at their equilibrium ratio within 1 h of the start of the reaction is interesting, when one considers that it was found that solutions of **1a** or **1b** only attained equilibrium proportions at times ≥ 12 h. This observation may provide some insight into the reaction mechanism. It is proposed that formation of **4** progresses through initial associa-

⁽¹⁸⁾ Caroll, W. E.; Green, M.; Galas, A. M. R.; Murray, M.; Turney, T. W.; Welch, A. J.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **1980**, 80.

Scheme 2

tive steps (Scheme 2). This would involve addition of one or both equivalents of CNBu^t to **1a** or **1b** to give molecules like **C** and **D**, respectively, and would involve a lifting of the B-H \rightarrow Co contacts. Bands for CO groups appearing and then diminishing in the IR spectrum in the range $2029-1937$ cm⁻¹ could correspond to such intermediate species. An opportunity is thus provided for both cages to rotate freely and interconvert the B_α -H and B_β -H bonds used in the formation of the agostic $B-H \rightharpoonup$ Co contacts. Upon loss of CO, the complexes 4 are generated in their thermodynamically stable ratio.

A variable temperature ${}^{11}B{}^{1}H$ } NMR experiment was conducted on a toluene- d_8 solution of **4**, measuring the spectra at temperatures up to 90 °C to observe the effect on the equilibrium between isomers **4a** and **4b**. Only minimal change was observed when compared with room temperature CD_2Cl_2 solutions, there being a slight adjustment in the equilibrium position, with the peaks due to each isomer remaining as distinct as those recorded at ambient temperatures.

The compounds $[Co(CO)₂(\eta^5-10-CO-7, 8-C₂B₉H₁₀)]$ (5) and *nido*-9-CO-7,8-C2B9H11 (**6**) were minor products of the reaction between [Co₂(CO)₈] and *nido*-7,8-C₂B₉H₁₃. Both species were never observed other than in poor yield, which is disappointing because **5** is isolobal with the well-known reagent $[Co(CO)₂ (\eta^5$ -C₅H₅)]. The cage ligand in **5** is zwitterionic and formally contributes five electrons to the metal. Such charge-compensated metallacarboranes are well-known.19,20 The appearance of only one resonance in the 1H NMR spectrum of **5** for the cage CH protons $(\delta 3.43)$ is indicative of the structure shown,

with the CO group at the β -site in the CCBBB ring ligating the metal atom. The observation in the ${}^{11}B{}^{1}H$ NMR spectrum of six signals (1:2:2:1:2:1) is also in accord with a symmetrical cage structure. The peak at δ -23.9 is assigned to the BCO group since in a fully coupled 11B NMR spectrum it remains as a singlet. A CO stretching band in the IR spectrum at 2156 cm^{-1} may be attributed to the BCO group, with strong bands at 2040 and 1990 cm^{-1} arising from the cobalt carbonyl ligands. The carbonyl carbon nuclei are clearly visible in the ${}^{13}C[{^1}H]$ NMR spectrum, with a broad singlet at *δ* 197.0 and a broad quartet at δ 172.0, the latter showing a ¹¹B $-$ ¹³C coupling of 85 Hz, allowing it to be assigned to the BCO group. It was not

Figure 4. 13C{1H} NMR spectrum showing the principal peaks for the $nido$ -carborane **6**: (a) quartet at δ 171.7 due to the BCO carbon nucleus, (b) signals at *δ* 57.5 and 46.6 due to cage CH carbon nuclei.

possible to obtain **5** in sufficient purity to procure an adequate microanalysis, chiefly because it is formed as an oily solid with unavoidable contamination by very small amounts of **6**. However, a positive-ion EI mass spectrum was obtained and this clearly shows a parent molecular ion peak at *m*/*z* 275 and peaks due to molecular ions resulting from consecutive loss of three CO ligands at 247, 219, and 190, respectively.

The *nido-*carborane **6** is a new member of the well-established family of charge-compensated species of formulation *nido*-*n*-L-7,8-C₂B₉H₁₁ ($n = 9$ or 10, L = NEt₃, NMe₂Ph, NC₅H₅, $NC_5H_4CO_2Me-4$, NMe₂COMe, THF, NCMe $).19,20$ In these molecules a neutral donor molecule L has replaced hydride (H^-) on a boron vertex in the open pentagonal face of the cage. Such species have been described as asymmetric $(n = 9)$ or symmetric $(n = 10)$ according to the site occupied by the donor molecule in the face.19c,21 The location of the proton in the face of the symmetric cage systems apparently does not lower the symmetry, probably because in solution there is rapid exchange between the two possible $B_{\alpha} - B_{\beta}(L)$ bridge sites. The function of a CO molecule as a donor into a carborane cage is comparatively rare, but has been observed before in the related *nido*-icosahedral carborane *nido-n*-CO-7-NMe₃-7-CB₁₀H₁₀ ($n =$ 8 or 9).22 In this molecule the CO ligand could be bound to either an α - or a β -site in the CB₄ face of the cage. A band in the IR spectrum of **6** at the relatively high frequency of 2152 cm^{-1} is in accord with the presence of the BCO group and is similar to that observed for compound **5**. On the basis of its NMR spectra (Table 2), compound **6** is assigned an asymmetric structure with the CO group attached to a boron atom in the R-site in the CC*B*BB ring. The asymmetry is reflected in the appearance of two resonances at δ 2.81 and 3.12 in the ¹H NMR spectrum for the cage CH protons. There is also a broad signal at δ -2.74 that may be ascribed to the *endo*-B-H-B group. The $^{11}B\{^{1}H\}$ NMR spectrum is also indicative of asymmetry displaying eight peaks, with the relative intensity of one

resonance $(\delta -0.1)$ corresponding to the fortuitous overlap of two signals. Importantly, a fully coupled ¹¹B NMR spectrum revealed that the peak at δ -30.5 remained a singlet and thus may be assigned to the BCO group. The ${}^{13}C{}^{1}H$ NMR spectrum was particularly informative, and the principal peaks are shown in Figure 4. In accordance with lack of symmetry in the molecule, two resonances are observed for the cage CH nuclei, one of these signals (*δ* 57.5) showing a fully resolved $11B-13C$ coupling of 43 Hz and the other (δ 46.6) a broader less resolved coupling of ca. 32 Hz. Normally these peaks are broad and weak, and since both these carbon atoms are each bonded to three inequivalent boron atoms in the polyhedral cage framework, the nature of this coupling is unclear. Possibly the couplings are all of a very similar magnitude, especially so for the quartet at δ 57.5. Most important, though, is the observation of a quartet at δ 171.7 (J_{BC} = 84 Hz) for the BCO carbon

^{(19) (}a) Wong E. H. S.; Hawthorne, M. F. *Inorg. Chem.* **1978**, *17*, 2863. (b) King, R. E.; Miller, S. B.; Knobler, C. B.; Hawthorne, M. F. *Inorg. Chem*. **1983**, *22*, 3548. (c) Kang, H. C.; Lee, S. S.; Knobler, C. B.; Hawthorne, M. F. *Inorg. Chem.* **1991**, *30*, 2024. (d) Chizhevsky, I. T.; Pisareva, I. V.; Petrovskii, P. V.; Bregadze, V. I.; Yanovsky, A. I.; Struchkov, Yu T.; Knobler, C. B.; Hawthorne, M. F. *Inorg. Chem.* **1993**, *32*, 3393.

^{(20) (}a) Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A.; Woollam, S. F. *Organometallics* **1994**, *13*, 157. (b) Go´mez-Saso, M.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *Polyhedron* **1996**, *15*, 793.

⁽²¹⁾ Young, D. C.; Howe, D. V.; Hawthorne, M. F. *J. Am. Chem. Soc*. **1969**, *91*, 859.

⁽²²⁾ Khan, S. A.; Morris, J. H.; Siddiqui, S. *J. Chem. Soc., Dalton Trans*. **1990**, 2053.

nucleus, which is very similar to that seen for the BCO group in compound **5**.

It is strongly believed that compound **6** derives from a cobalt species $[Co(CO)₂(\eta^5-9-CO-7,8-C₂B₉H₁₀)]$ similar to complex 5. This complex may then have decomposed, ejecting compound **6** possibly during chromatographic workup or even before. We have frequently found that unstable cobaltacarborane species can produce free cages among the decomposition products, though this is the first time a CO ligand from a transition metal moiety has been transferred directly to a C_2B_9 cage system. Attempts to synthesize compound **6** using a more logical route based on previous methods used to prepare compounds of the type $nido-n-L-7,8-C₂B₉H₁₁$ have so far been unsuccessful.

Conclusions

The isomers **1** are as far as we are aware the first cobaltacarborane carbonyl complexes to be isolated since an early report of the existence of the unstable salt $[NMe_4][Co(CO)_2(\eta^5-7,8-V)]$ $C_2B_9H_{11}$].²³ Although not structurally similar, the compounds **1** are isolobal with the cylopentadienylnickel carbonyl $[Ni_2(\mu CO$ ₂(η ⁵-C₅H₅)₂]. The reactions between **1** and PMe₂Ph or CNBut , which afford the species **2**, **3**, and **4**, indicate that the species **1** will serve as useful precursors to other complexes in which a *closo*-3,1,2-CoC₂B₉ cage system is bonded via cobalt to other ligands. Although the charge-compensated *nido*carborane **6** was only obtained in low yield, its existence is of interest in the context of the rarity shown by CO as a donor group to boron.

Experimental Section

General Considerations. Solvents were freshly distilled from appropriate drying agents prior to use. Petroleum ether refers to that fraction of boiling point $40-60$ °C. All reactions were performed under an atmosphere of dry nitrogen using Schlenk line techniques. Chromatography columns (ca. 15 cm in length and ca. 3 cm in diameter) were packed with silica gel (Aldrich, 70-230 mesh). Celite pads used for filtration were ca. 4 cm thick. The reagent $nido-7,8-C_2B_9H_{13}$ was prepared using a modified literature method.²⁴ The NMR measurements were recorded in CD_2Cl_2 at the following frequencies: ¹H at 360.13 MHz, $^{13}C{^1H}$ at 90.6 MHz, $^{11}B{^1H}$ at 115.3 MHz, and $^{31}P{^1H}$ at 145.8 MHz.

Reaction between $[Co_2(CO)_8]$ **and** $nido-7, 8-C_2B_9H_{13}$ **.** (i) A 500 mL jacketed round-bottom flask fitted with a 500 mL dropping funnel and a nitrogen bubbler was charged with a CH_2Cl_2 (150 mL) solution of $[Co_2(CO)_8]$ (2.00 g, 5.85 mmol) and cooled to 0 °C. A solution of *nido*-7,8-C₂B₉H₁₃ (1.60 g, 11.90 mmol) in CH₂Cl₂ (250 mL) was syringed into the dropping funnel and then added dropwise (ca. $2-3$ s⁻¹). The mixture was slowly warmed to room temperature and stirred for 24 h. After filtration through a Celite pad, the volume of the solvent was reduced in vacuo to ca. 8 mL and the solution chromatographed at -30 °C. Elution with petroleum ether yielded initially a dark brown fraction containing **1b**. A second dark brown band containing **1a** was next removed using a CH_2Cl_2 -petroleum ether (1:9) mixture. Further elution with CH_2Cl_2 -light petroleum ether (2:3) gave a light brown band of **5**. Finally, a pale brown band containing **6** was eluted using CH_2Cl_2 -petroleum ether (1:1). Solvent was removed from each fraction separately, and the complexes isolated by crystallizations from CH_2Cl_2 -petroleum ether or petroleum ether as follows: $[Co_2(CO)_2$ -(*η*⁵ -7,8-C2B9H11)2] (**1a**) (0.51 g) from CH2Cl2-petroleum ether (1:9, 10 mL); $[Co_2(CO)_2(\eta^5 - 7, 8 - C_2B_9H_{11})_2]$ (1b) (0.25 g) from CH₂Cl₂petroleum ether (1:9, 10 mL); [Co(CO)₂($η$ ⁵-10-CO-7,8-C₂B₉H₁₀)] (**5**) (0.13 g) from CH₂Cl₂-petroleum ether (1:9, 10 mL) at -78 °C; *nido*-9-CO-7,8-C₂B₉H₁₁ (6) (0.10 g) from petroleum ether (5 mL) at -78 °C. To achieve microanalytical purity, it was necessary to rechro-

Table 7. Atomic Positional Parameters (Fractional Coordinates × $10⁴$) and Equivalent Isotropic Displacement Parameters ($\AA^2 \times 10^3$) for the Atoms of **1a**

atom	\boldsymbol{x}	у	Z	$U(\text{eq})^a$
Co(1)	3302(1)	756(1)	6460(1)	27(1)
Co(2)	1737(1)	987(1)	6628(1)	28(1)
C(1)	3471(4)	$-479(8)$	5456(6)	41(2)
O(1)	3596(4)	$-1224(6)$	4795(5)	63(2)
C(2)	1322(5)	1517(8)	5400(6)	50(2)
O(2)	1043(4)	1857(8)	4635(5)	77(2)
C(11)	4346(4)	1899(7)	6999(5)	35(1)
C(12)	3466(4)	2271(7)	7542(5)	33(1)
B(13)	2669(5)	2594(7)	6666(5)	28(1)
B(14)	3158(5)	2438(8)	5422(5)	33(2)
B(15)	4234(5)	1923(8)	5702(6)	34(2)
B(16)	4260(5)	3500(8)	7587(6)	38(2)
B(17)	3194(5)	3940(7)	7368(6)	35(2)
B(18)	2998(5)	4096(8)	6012(5)	34(2)
B(19)	3970(5)	3672(9)	5409(6)	41(2)
B(110)	4738(5)	3319(9)	6397(6)	40(2)
B(111)	3973(5)	4646(8)	6573(5)	39(2)
C(21)	885(5)	388(8)	7744(5)	43(2)
C(22)	1853(4)	331(7)	8134(5)	32(1)
B(23)	2463(5)	$-581(8)$	7267(5)	31(2)
B(24)	1734(5)	$-1145(8)$	6258(6)	32(2)
B(25)	723(5)	$-418(9)$	6600(6)	40(2)
B(26)	1128(6)	$-672(9)$	8767(6)	47(2)
B(27)	2136(6)	$-1315(8)$	8465(6)	38(2)
B(28)	2057(5)	$-2280(8)$	7294(6)	38(2)
B(29)	974(5)	$-2186(8)$	6864(6)	39(2)
B(210)	408(6)	$-1181(9)$	7789(7)	48(2)
B(211)	1227(6)	$-2355(9)$	8208(6)	46(2)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized *Uij* tensor.

matograph each fraction and repeat the crystallizations. Even this procedure failed for **5** which persisted as an oily product.

Synthesis of $[Co_2(CO)(PMe_2Ph)(\eta^5 \text{-} 7, 8 \text{-} C_2B_9H_{11})_2]$ **.** Compound 1b $(0.20 \text{ g}, 0.46 \text{ mmol})$ in CH₂Cl₂ (20 mL) was treated dropwise with PMe₂Ph (65 μ L, 0.46 mmol), and the mixture was stirred for 6 h. Solvent was reduced in volume in vacuo to ca. 5 mL and the solution chromatographed at -30 °C. Elution with CH₂Cl₂-petroleum ether (1:1) removed a red-brown band, from which solvent was removed in vacuo. The residue was crystallized from CH_2Cl_2 -petroleum ether $(1:8, 10 \text{ mL})$ to yield $[Co_2(CO)(PMe_2Ph)(\eta^5 \text{-} 7, 8 \text{-} C_2B_9H_{11})_2]$ (2a) (0.13 g).

Synthesis of $[CoCl(PMe, Ph)₂(η ⁵ - 7,8-C₂B₉H₁₁)].$ **A solution of 1b** $(0.18 \text{ g}, 0.41 \text{ mmol})$ in CH₂Cl₂ (10 mL) was treated with PMe₂Ph (0.30) mL, 2.11 mmol) dropwise and the mixture stirred at room temperature for 3 d. Solvent was removed in vacuo, and the residue was dissolved in CH₂Cl₂ (5 mL) and chromatographed at -30 °C. Elution with a $CH₂Cl₂$ -petroleum ether mixture (2:3) removed a purple band. Solvent was removed in vacuo, and crystallization of the product from CH₂- Cl_2 -petroleum ether (1:5, 12 mL) gave purple microcrystals of $[CoCl(PMe₂Ph)₂(η ⁵-7,8-C₂B₉H₁₁)] (3) (0.26 g).$

Synthesis of $[Co_2(CNBu^t)_2(\eta^5-7,8-C_2B_9H_{11})_2]$ **.** Compound 1a (or **1b**) (0.20 g, 0.46 mmol) was dissolved in CH_2Cl_2 (20 mL), and CNBu^t (110 *µ*L, 0.97 mmol) was added dropwise. The mixture was stirred for 1 h, after which the solution was reduced in volume in vacuo to ca. 5 mL and chromatographed at -30 °C. Elution with CH_2Cl_2 petroleum ether (1:1) afforded a brown fraction. Removal of solvent in vacuo and crystallization of the residue from $CH₂Cl₂$ -petroleum ether (1:8, 10 mL) gave $[Co_2(CNBu^t)_2(\eta^{5-7}, 8-C_2B_9H_{11})_2]$ (4) (0.16 g from **1a**, 0.13 g from **1b**).

Crystal Structure Determinations and Refinements. Crystals of **1a**, **2a**, and **3** were grown by diffusion of petroleum ether into CH_2Cl_2 solutions of the complexes. Low-temperature data sets were collected for **1a** and **2a** with the crystals mounted on a glass fiber. A crystal of **3a** was mounted in a glass capillary with data collection carried out at an ambient temperature.

Data for **1a** and **2a** were collected on a Siemens SMART CCD areadetector three-circle diffractometer using Mo K α X-radiation, λ =

⁽²³⁾ Hawthorne, M. F.; Ruhle, H. W. *Inorg. Chem.* **1969**, *8*, 176.

^{(24) (}a) Hlatky, G. G.; Crowther, D. J. *Inorg. Synth.,* in press. (b) Young, D. A. T.; Wiersma, R. J.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1971**, *93*, 5687.

Table 8. Atomic Positional Parameters (Fractional Coordinates \times $10⁴$) and Equivalent Isotropic Displacement Parameters ($\AA^2 \times 10^3$) for the Atoms of **2a**

atom	\boldsymbol{x}	y	Z	$U(\text{eq})^a$
Co(1)	2764(1)	2693(1)	838(1)	17(1)
Co(2)	4614(1)	2295(1)	2594(1)	16(1)
C(11)	1477(5)	3793(4)	780(4)	22(1)
C(12)	2230(5)	3628(4)	2102(4)	21(1)
B(13)	4139(6)	3942(5)	2632(5)	20(1)
B(14)	4555(6)	4387(5)	1465(5)	22(1)
B(15)	2744(6)	4207(5)	252(5)	23(1)
B(16)	1720(6)	4873(5)	2102(5)	26(1)
B(17)	3418(6)	4978(5)	3300(5)	23(1)
B(18)	4885(6)	5525(5)	2898(5)	23(1)
B(19)	4041(6)	5694(5)	1401(5)	24(1)
B(110)	2103(6)	5293(5)	958(5)	27(1)
B(111)	3416(6)	6091(5)	2570(5)	26(1)
C(21)	4913(5)	670(4)	2651(4)	21(1)
C(22)	4412(5)	1217(4)	3686(4)	18(1)
B(23)	2902(5)	1568(5)	3053(5)	19(1)
B(24)	2418(5)	1114(4)	1390(4)	17(1)
B(25)	3814(5)	562(4)	1175(5)	20(1)
B(26)	4082(6)	$-325(5)$	3233(5)	22(1)
B(27)	2751(6)	233(5)	3449(5)	23(1)
B(28)	1453(6)	134(5)	1960(5)	21(1)
B(29)	2011(5)	$-502(4)$	799(5)	18(1)
B(210)	3652(6)	$-767(5)$	1613(5)	21(1)
B(211)	2184(6)	$-1044(5)$	2058(5)	22(1)
C(1)	2873(5)	1979(4)	$-562(4)$	24(1)
O(1)	2915(4)	1542(3)	$-1470(3)$	38(1)
P(1)	6996(1)	3101(1)	2887(1)	19(1)
C(31)	7228(5)	2713(5)	1467(4)	31(1)
C(41)	8038(5)	4756(4)	3652(4)	27(1)
C(51)	8238(5)	2551(4)	3915(4)	22(1)
C(52)	8421(5)	2837(4)	5158(4)	26(1)
C(53)	9382(6)	2476(5)	5990(5)	36(1)
C(54)	10158(6)	1815(5)	5607(6)	45(2)
C(55)	9966(6)	1527(5)	4388(6)	45(2)
C(56)	9019(5)	1890(5)	3555(5)	33(1)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized *Uij* tensor.

0.710 73 Å. For three settings of ϕ , narrow data "frames" were collected for 0.3° increments in *ω*. In both cases 1321 frames of data were collected affording rather more than a hemisphere of data. The substantial redundancy in data allows empirical absorption corrections to be applied using multiple measurements of equivalent reflections. Crystals of **2a** were very small, and data frames were collected for 60 s per frame giving an overall data collection time of ca*.* 25 h. For **1a** data frames were collected for 20 s per frame. The data frames were integrated using SAINT,^{25a} and the structures were solved by conventional direct methods. The structures were refined by full-matrix least squares on all $F²$ data using Siemens SHELXTL version 5.03,^{25b} and with anisotropic thermal parameters for all non-hydrogen atoms. For both **1a** and **2a** the agostic $B-H \rightharpoonup$ Co protons were located from final electron density difference syntheses, and their positions were refined. All other hydrogen atoms were included in calculated positions and allowed to ride on the parent boron or carbon atoms with isotropic thermal parameters ($U_{\text{iso}} = 1.2 \times U_{\text{iso equiv}}$ of the parent atom except for Me protons where $U_{\text{iso}} = 1.5 \times U_{\text{iso equiv}}$. All calculations were carried out on Silicon Graphics Iris, Indigo, or Indy computers.

The data set for **3** was collected on an Enraf-Nonius CAD4-F automated diffractometer operating in the ω -2 θ scan mode, using graphite-monochromated Mo K α X-radiation. Data were collected at various scan speeds of $0.54-5.17^{\circ}$ min⁻¹ in ω with a scan range of 1.15° + 0.34 tan θ . No significant variations were observed in the intensities of the monitored check reflections (<1%). All observed data were corrected for Lorentz and polarization effects, after which

Table 9. Atomic Positional Parameters (Fractional Coordinates × $10⁴$) and Equivalent Isotropic Displacement Parameters ($\AA^2 \times 10^3$) for the Atoms of **3**

atom	\boldsymbol{x}	у	Z	$U(\text{eq})^a$
Co	2439(1)	1810(1)	959(1)	28(1)
C(1)	1643(4)	454(3)	1231(3)	36(2)
C(2)	2471(4)	285(4)	550(3)	37(2)
B(3)	3783(5)	726(4)	849(4)	37(2)
B(4)	3785(5)	1215(5)	1894(3)	37(2)
B(5)	2355(5)	1025(4)	2088(3)	36(2)
B(6)	2082(5)	$-791(5)$	1059(4)	47(2)
B(7)	3481(5)	$-614(5)$	839(4)	44(2)
B(8)	4307(5)	$-52(5)$	1705(3)	42(2)
B(9)	3403(5)	125(5)	2460(4)	44(2)
B(10)	2034(5)	$-330(5)$	2056(4)	45(2)
B(11)	3260(5)	$-991(5)$	1836(4)	49(2)
Cl(1)	1224(1)	2149(1)	$-225(1)$	42(1)
P(1)	1401(1)	2967(1)	1570(1)	31(1)
C(11)	800(4)	4095(4)	1009(3)	44(2)
C(12)	2115(4)	3558(4)	2506(3)	49(2)
C(13)	108(4)	2387(3)	1832(3)	31(2)
C(14)	$-93(5)$	2266(4)	2642(3)	43(2)
C(15)	$-1096(5)$	1823(4)	2804(3)	52(2)
C(16)	$-1906(5)$	1492(4)	2179(4)	56(3)
C(17)	$-1714(4)$	1605(4)	1380(3)	48(2)
C(18)	$-723(4)$	2043(4)	1206(3)	41(2)
P(2)	3670(1)	2899(1)	476(1)	34(1)
C(21)	3875(5)	2609(4)	$-572(3)$	52(2)
C(22)	5127(4)	2966(4)	995(4)	52(2)
C(23)	3290(4)	4262(4)	401(3)	34(2)
C(24)	3678(4)	4926(4)	1040(3)	41(2)
C(25)	3389(5)	5963(4)	983(4)	55(3)
C(26)	2721(5)	6336(5)	291(4)	58(3)
C(27)	2354(4)	5698(5)	$-343(4)$	51(2)
C(28)	2623(4)	4658(4)	$-289(3)$	41(2)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized *Uij* tensor.

an empirical absorption correction²⁶ based on nine high-angle ψ scans was carried out. The structure was solved by direct methods, which located most of the non-hydrogen atoms, and successive Fourier difference syntheses were used to locate all remaining non-hydrogen atoms. Refinement was by full-matrix least squares on *F* using Siemens SHELXTL-PC version 4.1,^{25c} with anisotropic thermal parameters for all non-hydrogen atoms. Methyl and phenyl hydrogen atoms were included in calculated positions $(C-H 0.96 \text{ Å})$ and constrained to ride on their parent carbon atoms with fixed isotropic thermal parameters $(U_{\text{iso}} = 0.08 \text{ Å}^2)$. Terminal B-H hydrogen atoms were also included in calculated positions (B-H 1.10 Å, $U_{\text{iso}} = 0.06 \text{ Å}^2$).²⁷ All calculations were performed on a VAX station. Atomic scattering factors were taken from the usual source.²⁸

Final atomic positional parameters for non-hydrogen atoms with equivalent isotropic thermal parameters for complexes **1a**, **2a**, and **3** are listed in Tables 7, 8, and 9, respectively.

Acknowledgment. We thank the Robert A. Welch Foundation for support (Grants AA-1201 and 0668).

Supporting Information Available: Complete tables of atom parameters, bond lengths and angles, and anisotropic thermal parameters for **1a**, **2a**, and **3** (36 pages). Ordering information is given on any current masthead page.

IC960560S

^{(25) (}a) SAINT; (b) SHELXTL, version 5.03; (c) SHELXTL-PC, version 4.1; Siemens X-ray Instruments, Madison, WI.

⁽²⁶⁾ *Enraf-Nonius Vax Structure Determination Package*; Enraf-Nonius: Delft, The Netherlands, 1989.

⁽²⁷⁾ Sherwood, P. BHGEN, a program for the calculation of idealized H-atom positions for a *nido*-icosahedral carborane cage; University of Bristol, 1986.

⁽²⁸⁾ *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., 1974; Vol. 4.